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INTERACTING SCALES AND ENERGY TRANSFER
IN ISOTROPIC TURBULENCE

Ye Zhou'

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

ABSTRACT

The dependence of the energy transfer process on the disparity of the interacting scales

is investigated in the inertial and far-dissipation ranges of isotropic turbulence. The strategy

for generating the simulated flow fields and the choice of a disparity parameter to character-

ize the scaling of the interactions is discussed. The inertial range is found to be dominated

by relatively local interactions, in agreement with the Kolmogorov assumption. The far-

dissipation is found to be dominated by relatively non-local interactions, supporting the

classical notion that the far-dissipation range is slaved to the Kolmogorov scales. The mea-

sured energy transfer is compared with the classical models of Heisenberg [Z. Physik, 124,

628, (1948)], Obukhov [Isv. Geogr. Geophys. Ser., 13, 58, (1949)] and the more detailed

analysis of Tennekes and Lumley [The First Course of Turbulence, MIT press, (1972)]. The

energy transfer statistics measured in the numerically simulated flows are found to be nearly

self-similar for wavenumbers in the inertial range. Using the self-similar form measured

within the limited scale range of the simulation, we construct an 'ideal' energy transfer func-

tion and the corresponding energy flux rate for an inertial range of infinite extent. iFroni

this flux rate we calculate the Kolmogorov constant to be 1.5, in excellent agreement with

experiments [A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2, MIT Press,

(1975)].

'The majority of this work was completed at the Center for Turbulence Research, Stanford University,
Stanford, CA 94305, and NASA Ames Research Center, Moffet Field, CA 94305. Research was supported
by the National Aeronautics and Space Administration under NASA Contract No. NASI-19480 while the
author was in residence at the Institute for Computer Applications in Science and Engineering, NASA
Langley Research Center, Hampton, VA 23681.
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1. Introduction

Recently, an entire volume of the Proceedings of thc Royal 5ocifty 1 was devoted to

Kolmogorov's ideas about turbulence. Indeed, Kolmogorov's inertial range theory 2 4 has

formed a foundation for turbulence research for the last fifty years even though the existence

of an inertial range requires high Reynolds numbers (Re) normally encountered only in
4-5geophysical flows

Almost all turbulence theories and models rely on assumptions about the energy transfer

process. Although experiments can measure the total energy transfered to a given scale from

all other scales of turbulent motion, it is very difficult for them to observe the details of the

energy transfer process. On the other hand, analytical theories are not fully satisfactory

since they already invoive certain assumptions about triad interactions (Domaradzki and

Rogallo6 ). A promising approach to this question is through the use of results from nu-

merical simulations. High resolution direct numerical simulation (DNS) of turbulence allows

precise measurements of the individual terms of the Navier-Stokes equation, and is now a well

established adjunct to experiment for testing various theoretical predictions. Recently, the

classical Kohmogorov picture of energy transfer was questioned by Domaradzki and Rogallo6 ,

Yeung and Brasseur 7 and Ohkitani and Kida8 who concluded from low Reynolds-number nu-

merical simulations that energy is transfered downscale locally, supporting the basic concept

leading to the inertial range. However, they also concluded that this local energy transfer re-

sulted from nonlocal interactions, a notion clearly at variance with the classical Kolmogorov

picture. Yueng and Brasseur7 further argued that the predominance of the nonlocal inter-

actions would also invalidate the Kolmogorov assumption of local isotropy at small scales.

It is important to stress that the Kolmogorov theory is valid only for very high Reynolds

number turbulent flows. Measurements obtained from low Reynolds number simulations,

and also from large-eddy-simulations in which closure models are used, must be interpreted

with great caution regarding their implications about the Kolmogorov theory. While we

have no disagreement with these studies concerning the actual measurement of the raw

interaction statistics- the triad nonlinear transfer T(k,p,q)- we believe that T(k,p,q)

is not the appropriate quantity from which to determine whether the nonlinear interactions

contributing to the energy transfer are local or not. Rather, we follow Kraichnan's argument 9

that these raw interaction statistics should be viewed only as a mathematical building block

in the energy transfer process and their physical interpretation requires further summation,

during which much additional cancellation occurs.



2. The basic equations and measurements

We are concerned here with isotropic turbulence in an incompressible fluid. The velocity

field u,(k, t) in the spectral space is governed by the Navier-Stokes equation

[-+ vk2 ]u,(k,t) = -- P.,a(k) 1: uo(p,t)ut(q,t) + f.(k,t), (1)at 2 p+q=k

where P,#-,(k) = koP, (k)±+ k-,P,(k), P.0 (k) = b,,3-k,,ko/k 2 , f is the external force (f = 0

for the decaying case), and v is the kinematic viscosity.

The equation for the energy spectrum E(k) = 47rk 2 < ½1u(k)12 > is

2
a + 2vk 2]E(k) = T(k) + F(k), (2)

where F(k) is the forcing spectrum, T(k) is the the energy transfer function, and < .... >

denotes averaging over spherical shells. The contribution to T(k) resulting from nonlinear

interactions between Fourier modes in wavenumber band k and those in bands p and q is

denoted by T(k,p, q), which follows directly from (1) as

T(k, p, q) = I E Im[u•(k)Pp,,#(k)u#(p)u.,(q)]. (3)

Here E denotes summation over spherical shells in k, p, q subject to the triangle constraint

k = p + q. In turn, the net energy transfer into band k is the result of all contributing

interactions:

T(k) = ET(k,p,q). (4)
p,q

3. The simulated flow fields

Homogeneous turbulence at high Reynolds number is characterized by four different

ranges of spatial scales:

1. The very-large scales: This range is peculiar to unbounded flows, and the degree

to which its energy spectrum is universal is a subject of current study [see, for example,

Chasnovl°].

2. The energy containing scales: These control the overall dynamics of turbulence, and

are directly responsible for turbulence transport processes.

3. The inertial subrange scales: Here the effects of forcing and dissipation can be ignored

in the equation of motion. This range represents the pure energy cascade, and its energy

spectrum is the well known Kolnogorov spectrum
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E(k) = Ckf2/3 k 5/3, (5)

where f is the energy dissipation rate, and Ck is the Kohnogorov constant.

4. The far-dissipation range. The energy spectrum decreases exponentially with k.

E(k)- exp[-a(kr7)"'], k7 >> 1, (6)

where 77 = (zA/e)'1 4 is the Kolmogorov length scale. The precise form, including the value

of m, is also a subject of current study.

The capacity of present and foreseeable supercomputers is not adequate for fully resolved

DNS at large Reynolds number, and it is not possible to resolve phenomena occuring at

spatial and temporal scales extending over many orders of magnitude. Large eddy simu-

lation (LES) is an attempt. to avoid the numerical resolution of the small scale dynamics

by discarding the small scales themselves, which are presumed to contain rather universal

features, while retaining their effect on the resolvable scales by adding subgrid model terms,

usually as a dissipative mechanism, to the resolvable scale equations of motion". Although

the limitations of present day supercomputers do not allow simulation of the entire spectral

space at high Reynolds number, we can perform LES and DNS, for both forced and decaying

turbulence, with about two decades of spatial-scale resolution. Our strategy then is to obtain

accurate databases separately for each scale range, using appropriate combinations of these

approaches.

It is essential to obtain a simulated flow field as close to the Kolmogorov inertial range as

possible in order to obtain accurate measurements of the transfer process. The inertial range

is represented by statistically stationary flow fields generated using a Fourier spectral code in

which the Kohnogorov spectrum is maintained explicitly. As a result, the energy spectrum

for the inertial range LES is k- 5/3 over the entire spectral range of the simulation. The

method follows the spirit of Kraichnan's constrained decimation theory1 2 and is essentially

that of She and Jackson13 who reported a simulation at 1283 resolution (they called their

method the "constrained Euler" model). Basically at each time step, the Fourier modes in

each spherical shell are multiplied by the real constant that returns the shell energy to the

Kolmogorov k- 5 /3 spectrum. This method can be thought of as a constrained dynamical

system. For an N3 problem, one has placed N/2 constraints on the 2N:3 degrees of free-

dom. The method is equivalent to the use of forcing at the small wavenumber (via a linear

instability) and a spectral eddy viscosity at high wavenumber. To validate the method, we

have repeated our analysis using the forced LES dataset of (Chasnov14 at 128' resolution,

which was generated using the traditional spectral eddy viscosity' 5 and a !)ackscatter forcing,

and we also performed simulations at 64', 128', and 256' to investigate the effect of mesh



size. We analysed several independent fields at each resolution and found no variation in

the statistics. The results reported in this paper were measured in a stationary velocity field

on a 2563 mesh size after 3200 time steps of evolution. She and Jackson"3 found that the

measured scaling exponents for flatness factors are in good agreement with experiment"6 .

As in all numerical simulations, our inertial-range dataset is restricted by the finite com-

putational domain, and separating physics from numerics becomes an important concern.

It is necessary to identify and eliminate the numerical artifacts in the measurements. This

effort leads to the construction of an 'ideal' Kolmogorov inertial range and a determination

of the Kolmogorov constant.

The dissipation range is represented by a low-Reynolds-number forced DNS that reaches

a steady statistical state and a fully developed dissipation-range energy spectrum. The form

of the far-dis-ipation range spectrum has been of interest for a long time, and recently there

has been renewed interest in the subject.

We have also examined a high-Reynolds-number decaying DNS for comparision to both

the LES and the low Reynolds number DNS.

The main characteristics of these flow fields can be found in Table 1.

The energy spectrum for the high Reynolds number DNS (figure 2a) exhibits about

one decade of k-1/ 3 inertial range. The same spectrum, reploted in figure 2b, indicates

that for k77 > 0.3 the dissipation range has the form E(k) - exp(-aki7) with a - 4.9.

Figure 2 suggests that the high Reynolds number DNS dataset is a useful supplement to

the more specialized simulations of the inertial and far-dissipation ranges. The forced DNS

at R\ -, 40 (figure 3) contains a longer resolved dissipation range, as a result of the lower

Reynolds number, in which the spectrum is proportional to exp(-5.1krq). The a values of

4.9 - 5.1 agree with those found in forced DNS by Kerr 17 and Sanada18 and in decaying

DNS by Kida and Murakami19 . Note that the "turn up" of the spectra at very high k is

the pile up of energy, a numerical artifact associated with local energy transfer cutoff by the

Fourier spectral algorithm.

The transfer function at one instant of time in the inertial range LES (figure 4a) illustrates

that the flow field has over one decade scale that is relatively free of end effects. The energy

balances for the decaying DNS at high Reynolds number and the forced DNS at, low Reynolds

number (figures 4b-4c) indicate that there is an instantaneous quasi-equilibrium between

transfer and dissipation for k > :30 (high Re decaying DNS) and k > 20 (low R( forced

DNS), respectively. These simulated flow fields provide time data for our nmeasurements of

the energy transfer process.
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4. The scale disparity parameter

This work addresses a fundamental question regarding the energy transfer process. At
issue is the process of energy transfer across the spectrum and the choice of an appropriate

statistical quantity to describe it. Basically the problem is that the transfer is conservative,

with T(k) < 0 for small k and T(k) > 0 for large k, but since we cannot "tag" energy we

call not follow its "flow" across the spectrum precisely. We quote Tennekes and Lumley2 0 :

Although we expect that there will be a net flux of energy from smaller to larger

wavenumber, we do not know which eddy sizes are involved in the spectral energy

transfer across a given wavenumber. For example, does the energy come from

eddies that are slightly larger than a given wavelength, or does it come from

all larger eddies indiscriminately? In the same way, is the energy absorbed at

wave numbers slightly larger than a given value, or is it absorbed by all larger

wavenumbers ?

The basic approach of obtaining the band-to-band energy transfer function T(k, p, q) has

been described in Domaradzki and Rogallo', but here we have partitioned the spectral space

into half-octave bands rather than the linear bands previously used. The logarithmic shells in

our summation have introduced extra factors k, p and q. Since the turbulence is isotropic, it

is natural to average over spherical k, p, q shells giving the net transfer into band k resulting

from all interactions that involve bands p, q and k.

The raw interaction measurements T(k, p, q), formally the transfer due to the interaction

of sharply-truncated Fourier bands, form the basic building blocks for our analysis of tile

energy transfer process, and as figure 5 shows, they have qualitatively similar structures in all

of the simulated ranges. In particular, contributions T(k, p, q) to T(k) for a fixed p-band is

dominated by interactions with q < p. The plots illustrate a distinctly different character for

low and high k bands. In the range 0 < k < 2p, T(k, p, q) has a pair of positive and negative

peaks resulting from interactions with q in the range 0 < q < p. These interactions, which

involve little cancellation, are the major contributors to T(k,p) when summed over q. In

contrast for k > 2p interactions involving q > p produce positive and negative contributions

to T(k, p, q) of about the same magnitude, which tend to cancel. Thus, this latter-type of

interaction does not contribute as significantly to T(k, p) as the amplitudes in the figure might

suggest. The degree of cancellation, and the net contribution to the transfer depends oil tile

range involved. The contribution is significant in the far-dissipation range. Based on such

raw interaction measurements, and particularly the behavior at large k, Domaradski and

Rogallo 6, Yeung and Brasseur7 , and Ohkitani and Kidas concluded that the local energy
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transfer resulted from non-local interactions. But it is apparent from figure 5 that the

contributions of the various interactions nearly cancel at high k.

Using the helical wave decomposition and an "instability assumption", Waleffe2' has

identified which non-local helical-mode interactions are responsible for the observed large

local transfers. He argued that the energy cascade due to those interactions is actually

reversed in the inertial range. The analysis indicates that the physical process of the straining

of small scales by large scales, which results in local transfer by nonlocal interaction, must

be represented by at least two triads, resulting in cancellation between their individual triad

transfers T(k, p, q).

In order to separate the local and nonlocal interactions, we introduce the parameter

nqax(k,p,q)
s(k,p, q) min(k,p,q) (7)

which indicates directly the disparity of the interacting scales. This parameter has been

used to classify interactions as local (s < 2) and nonlocal (s > 2) by Lesieur 22. Kraichnan 9

introduced a different set of parameters (v, w) where v (v < 1) is the ratio of the shortest to

the middle leg and w is defined as k/p (1 < w < 1 +v). The pair (v, w) completely determines

a unique triad shape. Using the test field model, Kraichnan 9 calculated an energy transfer

locality function that gives the fraction of energy flux across a wavenumber due to triangles

whose smallest leg is larger than v times the middle leg. Analysis of this function indicates

that 65% of the transfer involves wavenumber triads in which the smallest wavenumber is

less than one-half of the middle wavenumber.

The work of Kraichnan9 provided a theoretical criterion by which one can determine the

,eiative importance of local and nonloý-.! interactionr For a given scale k, he argued that

all raw interaction statistics must be summed such that physical quantities contain only one

parameter which indicates the scale disparity of the interaction.

We use the scale disparity parameter s to study the flow of energy to small scales and

determine the scaling laws for the contributions of various interactions.

5. Analysis of the energy transfer function

The net energy transfer to scale k results from interactions of various disparities s as

T(k) = y T(k, s), (8a)

where
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T(k,s) = _ T(k,p,q) (8b)
p,qI.

is the partial sum of T(k,p,q), over all interactions in (p,q) at constant s. The key point

here is that the summation covers all interaction scales, subject to the triangle constraint,

leaving only the dependence on scale disparity. This follows in spirit the procedure described

in Kraichnan9 . This measure has the following advantage over the T(k, p, q) measurements:

f dkT(k, s) = 0. This follows immediately from the detailed energy balance

T(k, p, q) + T(p, q, k) + T(q, k, p) = 0

and the invariance of s(k, q, p) under permutation of its arguments. Note that f dkT(k, p, q)

0. Figure 6a shows the contributions T(k, s) of each octave of s to the total energy transfer

T(k) for the simulated inertial range. Recall that by construction the net transfer is zero,

and figure 6a can more easily be interpreted as (the negative of) the contributions of the

forcing and sub-grid viscosity. The measurement T(k, s) for the inertial range gives us only

limited information since the transfer at steady state is zero. More information can be ex-

tracted from T(k, s) measurements in the DNS databases. Figure 6b shows that relatively

local (s < 4) interactions dominate across most of the spectral space, while in contrast, figure

6c indicates that relatively nonlocal interactions become important at very large k. We will

address this point with a more sensitive measurement, the fractional energy flux function,

in following sections.

Recall that T(k, p, q) in figure 5 is a smooth curve for each (p, q) with a pair of positive and

negative peaks. The transfer sums T(k, s) contain relatively more statistical noise because

of the high degree of cancelation when the the raw interaction statistics are summed.

6. Analysis of the energy flux in the inertial range

The flux rate of energy across a scale k is the most bpv;c. measure of the energy transfer

process. In the Kolmogorov theory of the universal equilibrium range it is the only link

between the energetic and dissipative scales of motion. Contributions to the total flux from

the various scale interactions can be written as

H(k) = (k, s), (9a)

where

H(k,.s) = 0T(k),s)dk'. (9b)
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In the classical Kolmogorov inertial range, where energy injection is absent and dissipa-

tion is neglegible, energy conservation implies that the energy flux across the spectrum is

uniform. Note that this is a limiting s,,-iation as Re -+ cx. in such an 'ideal' inertial range,

all of the dissipation occurs in tb!i inertial range, but that finite dissipation is spread over

an infinite range of scales so that the dissipation within any finite range of scales is zero.

Figure 7 displays the resolved energy flux and the contributions lI(k,.s) of the various

scale disparities fc: the LES. While the Kolmnogorov theory implies a uniform energy flux

in the inertial iange, the computed energy flux is not uniform because it includes only the

numerically resolved-scales, and omits the flux due to the subgrid-eddy viscosity and forcing.

When these are included, the flux is uniform by construction.

Figure 8 indicates that the fractional LES energy flux [I(k, s)/HI(k) is dominated by local

interactions (small scale disparity .s) for all scales k. This closely resembles the classical

picture of the energy transfer process described in detail by Tennekes and Lumley2 °. More-

over, the dependence upon the scale disparity parameter is the same for all inertial range

scales, that is beyond the forced scales the normalized individual energy flux contributions

HI(k, .s)/HI(k) are essentially independent of k as would be expected in a scale-similiar inertial

range. In other words, n(k,s)/rl(k) - f(s). A less pronounced collapse can be seen for the

high Reynolds number DNS where a decade of inertial range exists (figure 9). Note that the

contributions for all s are of the same sign; there is no further cancellation in the sum over

s (see figure 7).

7. Heisenberg and Obukhov energy transfer models in the inertial range

The detailed conservation property of T(k, p, q) allows the energy flux through scale k to

be divided into two parts:

H(k) = [W(k) + nW(k) (10)

where

[V(k) ,dk' dp dqT(k',pq), (lla)

and

[IW(k) = - dk' dpJ dqT(k',p,q). (lIb)

There are two types of non-local contributions to the energy flux resulting from distinct

physical mechanisms: (1) when one of the wavenumnbers [say p] in WIS(k) is very low while

the other is q -A k, IP(k) is closely related to the classical energy transfer closure model of

Obukhov23 (see page 215 in Ref. 4) in which the strain due to the large scales causes local

8



energy transfer among the small scales, (2) when p, q >> k', Hli(k) is closely related to tile

classical 4ýddy viscosity closure model of Heisenberg24 (see page 217 in Ref. 4) in which the

process of energy transfer from large to small eddies is qualitatively similar to the conversion

of mechanical energy in a fluid into thermal energy via the kinematic viscosity. This forms

the basis for the eddy viscosity model.

The dependence of the Heisenberg and Obukhov energy transfer models on s in the

inertial range can easily be found. The Heisenberg energy transfer function is

HV(k) = -1 I kI/k/2 [E(kI)1/2 dk' k 2k12 E(k")dk,

while the Obukhov energy transfer function is

rT'(M = 721 E(k')dk'[j k"22E(k")dk"V]/ 2,

where -yj and 72 are constants3 . It is easy to show that

rl'(k) I d=k do(k 14/3) j d(k" 4/3

and f~~~o Ik'=k dk23
H5(k) I'=k d(k'-/ V213 )

in an E(k) - k-5 / 3 inertial range. When s is large, the three wavenumbers in a triad

effectively reduce to two scales. As a result,

H~(ks)IHC(k)

and
H'(ks)/HS(k) -

where s = kV/k". While dimensional analysis can not be used to find the correct s depen-

dence, tile models can be compared to numerical simulations, and figure 8 indicates that the

simulation data supports the s- 41 3 scaling of Heisenberg.

We calculate the contributions Fe(k, s) and H3(k, s) of the various scale interactions, by

partial summmation of (10) and (11) over p and q in the same manner as before. The local

interactions are shown in figures 10a and 10b to be more important than the nonlocal ones

for both terms in (10) in agreement with the classical notion of an inertial subrange and

with the T(k, s,) measurements above.

If we take the results at k - 20 to be representative (free from end effects) of the uniform

flux, we can see some difference in the behaviors of HI(k,s) and Hl"(k,s). [FP appears to

decrease monitonically as s increases, while F1- appears to grow with s up to about 2 < .s < 4,



and then to decrease at higher s. While the straining and eddy-viscosity interactions are

of similar magnitude at this wavenumber, the straining interactions appear to dominate at

high wavenumber. Indeed, these straining interactions are the source of the cusp in the

spectral eddy viscosity in Kraichnan's formulation15 . However, we must stress that the

dominance of the straining interactions at high k is an artifact of the sharp spectral-cutoff

that is used analytically in the renormalization group theory25-26 and numerically in our

present measurements. Indeed, one would expect that the relative physical contributions of

the eddy-viscosity and straining interactions in an inertial range would be invariant with k,

as we found for the disparity contributions (see figure 8). The corresponding measurements

for the high Reynolds number DNS are presented in figure 11.

8. Transfer estimates of Tennekes and Lumley

Tennekes and Lumley2
1 (hereafter TL) estimated the energy transfer from the character-

istic strain rates of different scales. In contrast to the models of Heisenberg and Obukhov,

this model estimates seFp.rately the input and output of energy at a given k.

The rate of energy transfer into eddies of scale k is modelled by the production term

Sij(q)rij(k'), where r is the Reynolds stress at scale k and S(q) = (q3E(q))'/ 2 is the strain

rate of eddies of scale q. Note that non-zero production requires that rTi be anisotropic.

The fractional contribution of scale q (q < k) to the total strain rate acting on scale k,

and to the energy transfer rate into scale k, is then

W, 3 (qE(q) )'12

where S is the total strain rate for all scales q < k.

The fractional distribution of the energy flux out of scale k can be estimated in the same

manner. Again, let S be the combined strain rate of all eddies with wavenumbers below k,

the time scale of the applied strain is of order 1/.IS. TL utilized the concept of the return

to isotropy and argued that the level of anisotropy of -ri1(k) produced by the strain of larger

scales depends on the time scale at k for return to isotropy 1/S(k) = (k 3E(k))-i/ 2 relative

to the time scale .5i of the straining motion. Note that because smaller eddies have larger

strain rates, small eddies return to isotropy rapidly.

The degree of anisotropy is assumed to be simply proportional to S/S(k), and the energy

transfer from all large eddies to an eddy of wavenumber k is approximately

(k) kE(k).

10



Based on the analysis above, the fractional distribution over scales q < k of the flux into

scale k in an inertial range is proportional to

, q3/2 E(q)1/2 ,,, q 2/3 , S-2/3,

and the fractional distribution over k > q of the flux out of q is proportional to

,, k-1l2E(k)' /2 - k-4/3 , s-4/3.

Note that the input scales like the Obukhov model while the output scales like the Heisenberg

model.

We have compared the measured transfers with the model of TL by breaking the net

transfer (8b) into its separate input and output components, depending on their sign:

T+(k, s) E _ T(k,p,q)IT>O (12b)
P,ql.

T-(k,s) = E T(k,p,q) T<o (12b)
P,ql,

We observe in figure 12 that the input and output curves collapse for the various k as

expected in a scale-similar inertial range and roughly follow the -2/3 and -4/3 powerlaws

respectively, as predicted by TL. Similar results are obtained for the high Reynolds number

DNS (figure 13) but the agreement with TL is not as clear.

9. Self-similarity of the energy transfer in the inertial range

We found in Sec. 6 that the fractional contributions to the energy flux are essentially

independent of k as would be expected in a scale-similar inertial range. This strongly

suggests that the transfer process is self-similar but it is important to confirm this directly.

Kraichnan9 pointed out that similarity within a Kolnogorov k- 5 /3 inertial range implies

the scaling

T(k,p,q) = a3T(ak,ap,aq) (13)

if all six wave-numbers are in the inertial range. If we take a = q-1, (13) reduces to

T(k,p, q) = q-3T(k/q,p/q, 1) = q-<F(k/q,p/q), (14)

and the number of dependent variables is reduced from three to two. In figure 14 we have

plotted T(k,p,q) against k/q for several representative values of p/q . While there is a

11



good collapse of the curves for the various bands, a failure of self-similarity is observed for

interactions involving bands near the spectral boundaries of the computation.

The transfer function

T(k,p) = ,T(k,p,q) (15)
q

gives the transfer of energy into k resulting from all interactions involving band p. Analogous

to (13), the self- similar scaling law for T(k,p) in the inertial range is

T(k,p) = a2T(ak, ap). (16)

We can further reduce (16) to

T(k,p) = p-<T(k/p, 1) = p-2 H(k/p). (17)

This self-similar law is also well satisfied except for p near the computational boundaries,

as shown in figure 15.

In both figures 14 and 15, self-similar profiles call be found by averaging over the collapsed

curves, and such averaged T(k,p) values have been marked in figure 15.

Note that the question of the locality of dominant interactions can be answered in terms

of figure 15. When .s is large, the three wavenumbers in a triad effectively reduce to two

scales. T(k,p) provides a direct measurement of the locality since self-similarity further

reduces the variables to one, implying an equivalence between s and the ratios k/p or p/k

when they are large. While an interaction range of s = 50, as seen in figure 15, may seem

rather "non-local", the basic question really is whether the interaction range is large enough

to contain both the energetic and dissipation scales at large Reynolds number. The rapid

./ decay, shown in figure 16, would seem to rule that out.

iFrom the detailed balance and figure 15, one expects that T(k,p) is antisymmetic at

large s, that is H(s) = -H(l/s). Figure 16 shows that this is indeed the case. The deviation

at very large s is due to numerical error.

10. The 'ideal' Kolmogorov energy transfer and inertial range

The failure of self-similarity near the computational boundaries is a numerical artifact of

the forcing and eddy viscosity used in the LES. This suggests that the numerical artifacts

can be eliminated, or at least reduced, by using the self-similar scaling to filter the raw data.

Essentially, the data redundancy implied by the scaling law's redhiction of three variables to

two allows us to reduce tle error associated with end-effects of thIe con'puitational douuainii.

T'o oltdain the corrected data, we, hayve simply removed thliec •crvs associalted with bIandls near

the Iimndaries thatl did iiot collapsc and averaged tHi' re'naiining ones. Such an operalioll
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reduces the data to a single curve that can be viewed as the 'ideal' one, that is, tile one that

would be obtained in an infinitely long inertial range. As a result, we are able to construct

the 'ideal' energy transfer function T(k) in an infinite inertial range, by integrating the

self-similar T(k,p) over a finite range of p.

A suitable analogy for such an infinitely long inertial range is an infinitely long 'pipe'

without leaks. To illustrate the interaction of scales, we 'cut' a finite section from this 'pipe'

and view its inflow and outflow. The finite section of pipe corresponds to thle finite range of

the integral over p mentioned above. The "ideal" T(k) constructed from simulations of size

643, 1283 and 2563 are shown in figure 17. The negative and positive peaks correspond to

inflow and outflow. Since the flow is statistically steady and f dkT(k) = 0, we have shifted

the peaks so that the three mesh sizes overlap. Because the 'ideal' pipe does not leak, its

length is not important. This is a direct visualization of the Kolmogorov energy transfer

process in a finite section of the 'ideal' inertial range, and the 'ideal' inflow and outflow

profiles are quite different from actual measured transfer spectra (figure 4a). Indeed, the
'pipe' concept is suggested by the long range of scales in figure 4a in which the net transfer

is very small.

11. A determination of the Kolmogorov constant

Experiments at high Reynolds number give values of the Kolnogorov constant in the

range of Ck - 1.5 (Monin and Yaglom 4), but values determined directly from spectra in nu-

merical simulations are usually around 2. (Vincent and Meneguzzi"7 , Sanada19 , Chasnov"4 ).

i.From inspection of the energy spectrum of the high Reynolds number DNS at R -, 200

(figure 2), we would estimate the Kolmogorov constant to be about 2.3. Preliminary work

of Shiyi Chen (private communication, 1993) suggested that a more realistic Kolnogorov

constant may be estimated from DNS by experimenting with the choices of Reynolds number

and resolution. For the inertial range LES data, the dissipation rate estimated from the

maximum resolved energy flux is .45 (figure 7), giving a value of the Kolmogorov constant of

1.7. (Recall that the energy spectrum was held constant at E(k) = k-5 /3 so that Ck(f,, = 1).

We can also measure the energy flux as the integral of the inflow or outflow of the 'ideal'

pipe (figure 17) . This gives a flux value of about .64 and a corresponding Kolmogorov con-

stant Ck - 1.5. This 'ideal' energy dissipation rate, evaluated using the self-similar law, has

hopefully eliminated the computational artifacts resulting from the limited computational

domain.
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12. Analysis of the energy flux in the far-dissipation range

In figure 18a we display the fractional contributions to the energy flux across different

scales k for the low-Reynolds number forced DNS. The curves for the various k do not col-

lapse, in contrast with the results in the inertial range. Instead, the scale disparity increases

with k. Analytical theories generally assume that the dynamics of the very small scales in

these ranges is controlled by interactions with the much larger Kohnogorov scales at which

the highest strain rates occur2". To test this assumption, we replot the data against kd.s/k

in figure 18b. The agreement with the analytical assumption is quite good ( note that the

theory actually over predicts the rescaling). This suggests that [I(k, .s)/H(k) f( ') and

the energy transfer is dominated by increasingly non-local interactions. A more detailed

analysis29 has appeared in the Proceedings of 1992 CTR Summer Program. Domaradzki3 °

proposed an empirical model for the far-dissipation range based on a scaling law3" that col-

lapses measured T(k, p, q). The model predicts the exponential decay of the energy spectrum

with wavenumber.

13. Conclusions

The basic energy transfer function T(k,p, q), which measures the energy flow produced

by the interaction of sharply truncated Fourier bands, is the starting point for the analysis of

the transfer of energy across the scales in a turbulent flow. At issue is the appropriate choice

of a statistical quantity to indicate the nature of energy transfer across the spectrum, and

particularly its dependence on the relative scales involved in the nonlinear interactions. Pre-

vious authors have interpreted the scaling of the interaction directly from the raw interation

measurements 6'-. Our results support Kraichnan's 9 view that T(k, p, q) is the fundamen-

tal building block in the energy transfer process but not the quantity one should use to

determine whether the dominant nonlinear interactions are local or nonlocal. For a given

scale k, we have summed the raw interaction statistics such that physical quantities, for

example the energy flux, contain only one parameter, s, that indicates the scale disparity of

the interaction and we have determined how these quantities depend on q. We found that

the net flux in the inertial range results primarily from relatively local interactions and that

contributions decrease as s-4/3 for large disparity.

We have compared the measured s dependence of the transfer process (LES dataset)

with several classical energy transfer models, specifically those advanced by Heisenberg24 ,

Obbukov23, and Tennekes and Lumley 20 . These models are built on different physical as-
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sumptions and their validity can not be determined by dimensional analysis.

The measured energy transfer is reasonably self-similar for wavenlnlbers in the inertial

range. Artifacts of the finite computational domain, the LES models, can be identified and

to some extent eliminated by constructing an 'ideal' energy transfer function. The energy

flux, corrected for the loss due to the finite computation domain, was used to calculate the

Kolmogorov constant 1.5, in excellent agreement with experiments4 .

We have presented a comparison of the compensated energy spectra for a high-Reynolds

number decaying DNS and a low-Reynolds number forced DNS. The far-dissipation energy

spectrum is found to be - exp(-akir/) with the range of a is 4.9 - 5.1, in agreement

with previous investigations 1 - 19 . The energy transfer process in the far-dissipation range is

found to be dominated by non-local interactions with a scale disparity that increases with

increasing wavenumber. This is consistent with classical theories that assume that scales

smaller than the Kolmogorov scale are slaved to it.

It should be noted that studies of the type presented here are limited to the question

of the statistical importance of interactions between various scales, and are not capable of

addressing questions of physical structure or mechanisms.
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flows V f 1 RA

LES vt(k) 0.65 - c0

d256x4 0.02 1254 0.0089 -200

f256a 0.01 13.16 0.0166 - 40

jc2f vt(k) - - 00

Table 1. Main turbulence characteristics of the flow fields. For LES, e is the

energy flux found as the integral of the inflow or outflow of the 'ideal' pipe (figure

17) . For the two DNS, e is the actual viscous dissipation.

k

FIGURE 1. The energy spectrum for the decaying LES of the large-scale range.
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FIGURE 2. The compensated energy spectrum for the decaying DNS at R, - 200.
(a) logrithmic plot: the spectrum below kr' = .1 gives an estimate of the Kolmogorov
constant. (b) linear plot: the central part decays with wavenumber as exp(-4.9krl).
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FIGURE 3. The compensated energy spectrum for the forced DNS at R -, 40.
The central part decays with wavenumber as exp(-5.1kij).
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(a)

(b)

9,.

k

FIGURE 4. Energy budgets of the simulations: , transfer T(k);
dissipation 2v f k2E(k) dk; ........ , transfer - dissipation. (a) inertial-range LES
at one instant. (b) decaying DNS at R,\ - 200: (c) forced DNS at R\ "- 40: There
is an instantaneous equilibrium between transfer and dissipation for high k in the
DNS.
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(c)

k•q

F,-,URE 5. The interaction transfers T(k,p, q) involving 27/2 < p < 28/2 and all q
bands: (a) inertial-range LES; (b) decaying DNS at R\ -" 200; (c) forced DNS at
Rx -, 40. The curves correspond, left to right, to increasing q.
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(a) inertial range LES; (b) decaying DNS at R, "-, 200 (c) forced DNS at RA "-- 40.
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k

FIGURE 7. Contributions If(k, s) to energy flux in the inertial range LES. o, total;
, 1 <s <2; A2< s <4; +, 4< s <8; x, s >8.

FIGURE 8. Fractional contribution f1(k, s)/fl(k) to the energy flux in the inertial
range LES. The various curves are for k = 2,1/2, 6 < n < 14. The straight lines
indicate s-2/3 and s-4/3 behaviors.
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S

FIGURE 9. Fractional contribution II(k, s)/II(k) to the energy flux for the decaying
DNS at R\ -' 200. The dependence of energy flux upon the scale disparity of
contributing interactions is illustrated. The various curves from left to right are for
k = 2n/2,6 < n < 14.
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(a)
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w 2

k

FIGURE 10. Contributions to the energy flux in the inertial range: a total
II'(k,s)le; o, 1 <s < 2; ,& ,2<s <4; +,4 <s < 8; x, s> 8. (a) Strainin~g(Obhukov) interactions; (b) eddy-visocosity (Heisenberg) interactions.
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(a)

(b)

FIGURE 11. Contributions to the energy flux for the decaying DNS at R,\ 200:
,,, total II'(k)/f; o , 1 < s < 2; &, 2 < s < 4; +, 4 < s < 8; x, s > 8. (a) Straining

(Obhukov) interactions; (b) Eddy viscosity (Heisenberg) interactions. The straining
interactions dominate at high krq as predicted by Domarandzki3 °.
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(b)

FIGURE 12. Fractional input and output distributions of the energy flux through
scale k for the inertial range LES: (a) input; (b) output. The range of k is the same
as in Figure 8. The straight lines indicate s-2/3 and s-4/3 behaviors.
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FIGURE 13. Fractional input and output distributions of the energy flux through
scale k for the high Reynolds number DNS: (a) input; (b) output. The range of k
is the same as in Figure 9. The straight lines indicate s-2/3 and s-4/3 behaviors.
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FIGURE 14. Direct verification of self-similarity (14) of the transfer T(k, p, q) in
the inertial range. (a) p/q = 1/8; (b) p/q = 1/4; (c) p/q = 1.
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log2 (k/p)

FIGURE 15. Self similarity of the transfer function T(k,p) in an inertial range.
The curves are for the various p bands of the inertial range LES. The points " are
the average values of H(k/p) used to represent the "ideal" inertial range.

4

FIGURE 16. The self-similar transfer function T(k,p): " , s = k/p; +, s = p/k.
The line indicates a s-41"' behavior. The scatter at large s is due to numerical error.
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FIGURE 17. The 'ideal' self-similar transfer T(k): " , 643 mesh; +, 1283 mesh; x,
2563 mesh.
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(b)

Skd/k

FIGURE 18. Fractional contribution II(k, s)/rI(k) to the energy flux in the
dissipation-range DNS. (a) plotted against s, the curves are for k increasing left
to right, (b) plotted against skd/k, the curves are for increasing k right to left.
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